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A nonlinear model of bicycle shimmy
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ABSTRACT
This paper presents a nonlinear model accurately describing, both
qualitatively and quantitatively, the onset and dynamics of bicycle
shimmy. Methods of nonlinear dynamics, such as numerical contin-
uation and bifurcation analysis, show that the model exhibits two
stable periodic motions found experimentally in on-road tests: the
weave and wobble (or shimmy) mode. The modelling results are
compared with experimental data collected by riding a racing bicy-
cle downhill at high speeds with hands on the handlebar. Themodel
predicts with surprising accuracy the amplitudes and frequencies of
the oscillations, the longitudinal velocity at which they occur, as well
as the substantial independenceofwobble frequency and amplitude
from the forward speed. The lateral acceleration of the upper tube of
the frame near the steering axis reaches 5–10 g, both in the model
and in the data. The analysis shows that wobble onset and ampli-
tude is particularly sensitive to changes in the torsional stiffness of
the frame and strongly depends on tyre lateral force and aligning
torque at the wheel–road contact point. It also allows to quantify
the additional viscous rotary damping that should be added to the
steering assembly to prevent wobble.
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1. Introduction

Wobble, more commonly known as shimmy, is an unwanted oscillation typical of bicycles
andmotorcycles. It is a high-frequency, often violentmotion of the front framewith respect
to the steering axis, addressed by popular journals and numerous videos on the Internet
[1–3]. Such a phenomenon can have dramatic consequences, especially for the unprepared
rider. Although shimmy is well-known and documented in the scientific literature, little
on-road data is available for a thorough study of the phenomenon.

One of us experienced several scary shimmies, riding downhill at high speedwith hands
on the handlebar, first with an aluminium alloy frame and then with a carbon professional
racing bicycle. Once the carbon bicycle was sensorised, we discovered that lateral acceler-
ations on the horizontal tube of the frame were in the range of 5–10 g, as can be seen in
Figure 1(a). These data were collected in August 2014 near Lecco (Italy) and give unique
information about wobble amplitude, duration, phase and dependence on forward speed.
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Figure 1. Data recorded by an IMU on the rear frame of the racing bicycle near the steering axis. Test
activity of August 2014. (a) Lateral acceleration, (b) roll angular velocity, (c) yaw angular velocity.

A couple of years before, in 2011, another on-road test activity was performed by the
same rider and with the same carbon bicycle. The results of this activity are described in
[4]. This was the starting point of our studies on what causes shimmy and how it can be
fought, and inspired other works such as [5,6].
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To make use of the available data, we needed a suitable model of the bicycle: suffi-
ciently simple to link the observed phenomena with meaningful physical quantities, but
sufficiently detailed to capture as much as possible the complex dynamics we found in the
data. Perhaps surprisingly, given the apparent simplicity of a bicycle, a definitive model
capturing even just its macroscopic dynamics has still not been found, unless one consid-
ers the complex multi-body models that offer highly detailed numerical simulations but
little insight into the physical origins of the observed phenomena. In this paper, starting
from the dataset collected in Lecco we propose for the first time amodel capable of making
sense of the data, both qualitatively and quantitatively.

The foundation of our model is the three degrees of freedom Carvallo–Whipple model
illustrated in [7]. It consists of four rigid bodies connected by rotational joints: rear wheel,
rear frame with a passive rigid rider, front frame and front wheel. It stands on the assump-
tion of ideal rolling between wheels and road surface, with no lateral and longitudinal slip.
This model highlights two important vibrational modes that characterise a two-wheeled
vehicle: weave and capsize. Weave is an oscillatory motion of the rear frame about roll axis
together with oscillations about the yaw axis. It is a low-frequency mode that can be easily
counteracted by the rider. Capsize is a non-oscillatory motion by which the bicycle follows
a spiral path with increasing values of the roll angle, ultimately leading to a lateral fall. No
oscillation related to shimmy is observed in this model.

Subsequent studies on motorcycle dynamics [8–10] have shown that three new compo-
nents are needed to trigger wobble, and they are believed to jointly contribute to determine
shimmy: an additional degree of freedom, which represents the lateral rotation of the front
frame about the axis β [5,11], a non-ideal characteristic of tyre lateral force and align-
ing torque, and a non-trivial dynamics of the tyres. In fact, during motion tyres do not
respond instantaneously upon moving from the equilibrium condition, but it takes some
time before lateral force and aligning torque approach the final value. The importance of
tyres dynamics in shimmy was first asserted in [12].

The onset of wobble mode was partially explained with a linear bicycle model in [6],
based on the Carvallo–Whipple model with the addition of the effects highlighted above.
The linear model displayed a Hopf bifurcation with eigenvalues compatible with the fre-
quency of shimmy. Shimmy is, however, a stable periodic motion, and as such it is an
essentially nonlinear phenomenon. The linear model of [6] cannot capture its dynamics
(and in particular cannot describe its amplitude, for validation against experimental evi-
dence) nor can it describe the complex interaction of the shimmy oscillation with other
stable but non-equilibrium riding regimes.

In this workwe extend the linearmodel of the racing bicycle described in [6], adding the
nonlinear terms that are necessary to describe, qualitatively and quantitatively, the onset
as well as the dynamics of shimmy. To this end, we have relaxed the assumption of small
angles at the contact point between wheel and road surface. The numerical analysis of our
nonlinear model closely matches the experimental results described in Figure 1 and in
[4], and the outputs of a complex multi-body model illustrated in [13]. This means that
the model presented in this work is an effective mathematical tool to interpret the experi-
mental data. Moreover, and most importantly, it allows to study and understand shimmy,
without riding the bicycle downhill at high speed – a frightening and dangerous experience
for the rider. The methods we use in this paper – a nonlinear model and bifurcation anal-
ysis – closely resemble those used in [14]. That work is however addressing a motorcycle
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model, rather than a bicycle, and the results are not tested against experimental data as we
do here.

The paper is organised as follows. Section 2 gives an overview of the bicycle model and
provides a detailed description of the nonlinearities introduced in the model. In Section 3
the nonlinear analysis is performed. The starting points are time simulations and frequency
spectra of the system for different parameter values. Then, a one-parameter continuation
in the forward speed and a two-parameter bifurcation diagram in the plane of forward
velocity and torsional frame stiffness are computed. Section 4 is devoted to understanding
the influence of a steering damping on the vibrationalmodes. Finally, Section 5 summarises
and discusses the results.

2. Model description

The linear racing bicycle model on which this work is based is taken from [6], where
parameters were in turn identified using the same bicycle as in Figure 1. The authors of
[6] modelled different possible configurations: passive rider with hands off the handlebar
and in an upright position, rider with hands off the handlebar and upper body leaning for-
ward and, lastly, rider with hands on the handlebar and upper body leaning forward. These
different rider’s positions change the loads distribution, the location of the centre of grav-
ity and the inertia tensors. For our purpose, the most interesting configuration is the last
one: it matches the set-up of the on-road experiments of Figure 1, and is themost common
when riding a racing bicycle at high speed, when shimmy is more likely to occur. For this
reason, this paper will only focus on the model of a rider with hands on the handlebar and
upper body leaning forward.

The bicycle model is illustrated in Figure 2. It is a five-degrees-of-freedom system with
a passive rider model, lumpedmasses and spring-damper elements. The origin of the hori-
zontal moving reference frame is the rear contact point between wheel and road. Themain
frame of the bicycle, which includes the vehicle rear part, the rider and the rear wheel,
can rotate about the vertical axis z with an angular velocity ψ̇ . At the same time it can

Figure 2. Rider with hands-on the handlebar and with his upper body bent forward. Reference system
and degrees of freedom are shown with their positive values. Data are taken from [6].



VEHICLE SYSTEM DYNAMICS 5

rotate about the roll axis x, which is included in the longitudinal symmetry plane, with an
angle ϕ. Another degree of freedom is the lateral displacement y of the rear contact point.
The forward speed v is constant and set as a model parameter. The front frame, that is,
the assembly of handlebar, stem, fork and front wheel, is connected to the rear part by a
rotational joint. This element allows rotations about the steering axis δ. The model also
takes into account rotations of the front frame about the axis β . This axis is in the symme-
try plane of the vehicle and is perpendicular to the head tube. This additional generalised
coordinate is restrained by a spring-damper element and allows to model the lateral com-
pliance of the rear frame at the head tube and of the fork, and the lateral movement of the
front hub [15].

We do not report here the equations of themodel in Figure 2, as these can be found, with
more detailed model description, in [6]. We now focus instead on the changes introduced
in the model considered here compared to the one found in [6].

2.1. Model nonlinearities

The contact area between road and wheel is a region that depends on tyres inflation pres-
sure and geometry. Under normal operating conditions the resulting force is usually shifted
backwards with respect to the ideal contact point by a distance called pneumatic trail. This
results in a torque at the ideal contact point, as shown in Figure 3 using the sign convention
from [16].

The relation between the camber and side-slip angles1 and the ( normalised) lateral
force Fy and self-aligning torqueMz, under the assumption of straight rectilinear motion,
is captured by the following equations:

F̄y =
Fy
Fz

= F̄camber(γ ) + F̄sideslip(α), (1)

and

M̄z = Mz
Fz

= M̄twisting(γ ) + M̄selfaligning(α), (2)

where Fz is the vertical load acting on the wheel.

Figure 3. Tyre definition: camber angle γ is the angle between the wheel centre plane and the vertical
axis z of the road surface. Side-slip angleα is the angle between thewheel centre plane and the direction
of its velocity V . Fx is the longitudinal force, Fy is the lateral force and Fz is the normal force. Mx is the
overturning torque andMz is the aligning torque. Positive values are shown. The left figure is a top view,
the right one is a rear view.
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The above equations appear in the model in [6] where, standing on a small-angles
assumption, the functions F̄camber, F̄sideslip, M̄twisting, M̄selfaligning are taken linear:

F̄camber(γ ) = Cfγ γ , F̄sideslip(α) = Cfαα, (3a)

M̄twisting(γ ) = Cmγ γ , M̄selfaligning(α) = Cmαα. (3b)

The coefficients of the linear functions used in [6] are reported in Table 1. The self-aligning
torque tends to align the wheel to the direction of speed; on the other hand, the twisting
torque represents the tendency of the cambered wheel to move along a trajectory with
a smaller curvature radius, thus it has a completely different effect than the self-aligning
torque. It is worth noting that all the coefficients in Equations (3) may be different for the
front and the rear wheel. In the remainder of this work it will be assumed that both wheels
have the same elastic properties.

Additionally, the camber and side-slip angles themselves exhibit a dynamic behaviour,
due to the delayed response of the wheel under non-zero side-slip or camber angles. This
delay in the deformation is modelled by two first-order differential equations of the form2:

σα

v
α̇ + α = α̂, (4)

σγ

v
γ̇ + γ = γ̂ , (5)

where α̂ and γ̂ are functions of the state variables β , δ, ϕ, y,ψ and their time derivatives, as
reported in [6]. The characterising parameter describing this effect is the relaxation length
σ . This is a constant in the above equations, though amodel with σ depending on side-slip
and camber angles would be more accurate. Its value can be determined experimentally, as
stated in [17].

We know from real-world experience that, even during a violent shimmy, the rotations
about roll, yaw, steering, and β axes have limited amplitude. For example, during our on-
road tests we observed a roll angle |ϕ| ! 3◦, and a yaw angle |ψ | ! 4.5◦. Small rotations,
however, do not necessarily translate into small deformation at the contact points between
tyres and road surface, especially at the front wheel: the resultant tyre strain is an alge-
braic sum of the deformation caused by rotations around axes δ, β , ψ and ϕ and their
time derivatives. To account for the nonlinear effects of tyre deformation in the model, we
dropped the assumption of small camber and side-slip angles, and adopted a realistic tyres
description.

Typical trends of the terms F̄camber, F̄sideslip, M̄twisting, and M̄selfaligning are found in [18].
Thatwork reports the characteristics of different tyres undermultiple operating conditions,

Table 1. Coefficients used to determine
forces and torques in the linear case.

Coefficient Value Unit

Cfγ 0.8594 rad−1

Cfα 13.7510 rad−1

Cmγ 0.0344 m rad−1

Cmα −0.3438 m rad−1
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but none of them is a racing tyre. Racing tyres, which were used in the test of Figure 1,
have a significantly different structure than other tyre types. To better approximate the
conditions found in our field test in terms of steady-state force andmoment characteristics,
and lacking a precise identification of the tyres used in the test, we modelled our nonlinear
characteristics to have the same trend as in [18], but using data for the racing tyre Vittoria
Randonneur Hyper 37-622, taken from [19].

As seen in [18], the camber force saturates at high values of the camber angle. We
model this saturation with a hyperbolic tangent, obtaining the following formula for the
normalised camber force:

F̄camber = A1 tanh
(Cfγ γ

A1

)
. (6)

Similarly, with increasing angles the lateral force and the twisting torque level off from the
tangent stiffness due to the slippage in the contact area. Hence, we choose to model the
second term of the lateral force and the twisting torque as:

F̄sideslip = A2 tanh
(
Cfαα

A2

)
, (7)

M̄twisting = A3 tanh
(
Cmγ γ

A3

)
. (8)

The trend of the self-aligning torque is significantly different from the three functions
above: it has negative slope at very low side-slip angles, a local minimum at small angles,
and a constant asymptote for large angles. We describe this behaviour with the formula:

M̄selfaligning = A4 sin(A5 tanh(A6α)), (9)

which is very similar to the simplifiedMagic Formula provided by Pacejka [16] to represent
the same characteristic. Parameter A4 is the peak factor and, for A5 > π/2, represents the
minimum of the curve. The aligning stiffness Cmα , which is the derivative of (9) at α = 0
and appears as an explicit parameter in [6], is here a function of A4, A5, A6, with value:

Cmα = A4A5A6. (10)

Using Equations (6)–(9) in (1) and (2) we finally obtain:

Fy =
[
A1 tanh

(Cfγ γ

A1

)
+ A2 tanh

(
Cfαα

A2

)]
Fz, (11)

Mz =
[
A3 tanh

(
Cmγ γ

A3

)
+ A4 sin(A5 tanh(A6α))

]
Fz. (12)

Table 2 reports the values of the parameters used in our numerical analysis. Note that we
have taken parameter values so that the slopes of (11) and (12) at α = 0 and γ = 0 coin-
cide with the stiffness coefficients used in [6] and found in Table 1. Figure 4 highlights
the difference between linear and nonlinear tyre characteristics for the four components
of normalised lateral force and aligning torque.
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Table 2. Parameters used to determine
forces and torques in the nonlinear case.

Coefficient Value Unit

A1 0.7000 –
A2 0.6200 –
A3 0.0400 m
A4 −0.0090 m
A5 3.2300 –
A6 11.8258 –
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Figure 4. Differences between linear andnonlinear tyre characteristics. First row: lateral force Fy; second
row: aligning torqueMz.

3. Nonlinear dynamics of the racing bicycle

We now discuss the dynamics and bifurcations of our bicycle model. Bifurcation analysis
was performed using MatCont [20], a free graphical Matlab software package for the
interactive numerical study of dynamical systems, which allows to simulate the system
and, most importantly, to track bifurcations of its attractors as one or more parameters
are changed.

In our model the two most significant parameters are the forward speed v and the tor-
sional stiffness coefficient kβ . The latter represents the lumped compliance at the steering
head related to rotations about the β-axis, and can be partially modified by stiffening the
bicycle frame during experimental test activities. The purpose of the analysis that follows is
to describe how the main attractors of our model, that is, the main dynamic regimes which
we expect to observe in the model after all transients have vanished, depend on these two
parameters. In particular, we analyse the relative contributions of the twomain vibrational
modes of the bicycle (weave and wobble) to the overall dynamics, showing that they closely
match, quantitatively and qualitatively, the data obtained in the tests of Figure 1.
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3.1. Time and frequency domain analysis

Let us start by simulating the bicycle’s behaviour at three different speeds. In all simulations,
we set the stiffness parameter kβ = 4784.2Nm/rad, matching the value estimated in [6] for
the bicycle used in the experiments of Figure 1.

Figure 5(a,b) shows the trajectories of δ, β , ϕ̇, and ψ̇ when v = 13.5m/s, while
Figure 5(c) shows the corresponding spectra computed by a fast Fourier transform. At this
speed value, the bicycle has an unstable equilibriumwhere all angles are zero. An arbitrarily
small perturbation from this equilibrium brings the system onto a stable and constant-
amplitude low-frequency oscillation that mainly involves the rear frame: the bicycle is
oscillating about the yaw and roll axes. This is typical of the weave mode of vibration.

Figure 5(a) shows that the roll and yaw angular velocities have a phase difference of
90◦: when the former is zero, the latter reaches its extrema. From the point of view of the
rider, the oscillation starts with a positive (clockwise) rotation of the steering axis, which
causes the bicycle to rotate clockwise about the yaw axis. This is then followed by a counter-
clockwise rotation about the roll axis. The amplitude of the roll oscillation is larger than
that of the yaw one. These results are in accordance with the data reported in [13], where
a high-definition multi-body model of the racing bicycle is used to simulate its dynamics.
The frequency of the weave at the selected combination of forward speed and frame stiff-
ness is equal to 0.91Hz (Figure 5(c), the others peaks are signal harmonics). This value is
consistent with those recorded during the experimental activity of Figure 1.

A qualitatively different oscillation is found in Figure 6 for v = 14.1m/s, a speed
only slightly higher than the previous case. The trajectories now exhibit a mix of both
low-frequency and high-frequency, non-harmonic components, respectively, at 0.93 and
7.75Hz. This means that the weave mode is still visible, with slightly higher frequency
than before, while a new high-frequency mode has emerged.
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Figure 5. Simulation for v = 13.5m/s and kβ = 4784.2 Nm/rad. (a) Trajectories of roll ϕ̇ and yaw ψ̇
angular velocities, (b) trajectories of rotations δ and β , (c) corresponding spectra.
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Figure 6. Simulation for v = 14.1m/s and kβ = 4784.2 Nm/rad. (a) Trajectories of rotations δ andβ , (b)
trajectories of roll ϕ̇ and yaw ψ̇ angular velocities, (c) corresponding spectra.

Finally, Figure 7 depicts the bicycle’s behaviour at v = 15m/s. In this case, the amplitude
of the yaw angular velocity is greater than the roll one. Moreover, the two signals are in
antiphase: when the former reaches a maximum, the latter is at its minimum. This phase
difference is a distinctive property of the wobble mode, in accordance with the output of
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Figure 7. Simulation for v = 15m/s and kβ = 4784.2 Nm/rad. (a) Trajectories of roll ϕ̇ and yaw ψ̇
angular velocities, (b) trajectories of rotations δ and β , (c) corresponding spectra.
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the multi-body model in [13]. Figure 7(b) shows the trajectory of the steering and β axes:
their amplitude and their frequency are consistent with a wobble mode. When the front
frame rotates clockwise about the head tube (positive value), the rotation about β axis
is such that the bicycle tries to keep the direction of the straight motion. This is due to
the contact constraint between front wheel and road surface. The frequency of the main
peak is 7.77Hz (Figure 7(c)) and it is quite close to the 7.5Hz recorded during the test
activity of Figure 1.Note that the high-frequency peak thatwe found in Figure 6(c) (centred
at 7.75Hz) is very close to the frequency peak of the wobble mode in Figure 7, and the
phase of yaw and roll signals are approaching a 180◦ offset. This suggests that the high-
frequency peak of Figure 6(c) is a wobble mode, interplaying with the more prominent
weave mode.

Summarising the results obtained in this section, for low values of the forward speed
the only mode of vibration that characterises the bicycle is the weave, while for high values
of the speed there is only wobble. In between there is a speed interval in which the two
vibrational modes coexist and interact.

3.2. One-parameter bifurcation analysis

To better characterise the interaction between weave and wobble modes, identified in the
previous section, we now report a one-parameter bifurcation analysis of our model using
the forward speed v as bifurcation parameter, keeping the torsional stiffness coefficient
constant and equal to kβ = 4784.2Nm/rad. By changing v in the interval 5 ! v ! 25m/s,
which are typical operating conditions for a racing bicycle, we identify and numerically
continue the equilibria and limit cycles of our model, showing how they transform into
one another. Figure 8 summarises the results of the numerical continuation with a zoom
to better understand the label of the points. Subfigures illustrate themaximumamplitude of
the state variables δ,β , ψ̇ and ϕ̇. Solid lines stand for branches of stable solutions (equilibria
or limit cycles), whereas dashed branches stand for unstable solutions.

The straight line at the bottom of all four subfigures is the trivial equilibrium, that is,
the rectilinear motion of the bicycle. It is unstable over the whole speed interval. The
equilibrium undergoes two supercritical3 Hopf bifurcations, identified by points Hwo at
v = vHwo = 13.23m/s and Hwe at v = vHwe = 14.21m/s.

At Hwo, an unstable limit cycle is born from the equilibrium. As we can see in the
figures, the limit cycle exists for v > vHwo, and becomes stable through a supercritical
Neimark–Sacker bifurcation (point NSwo at v = vNSwo = 14.23m/s). For v > vNSwo, this
stable limit cycle appears to be the only attractor of the system. This is the wobble oscilla-
tionwe identified in the previous section. For v < vNSwo, the supercriticalNeimark–Sacker
bifurcationmarks the birth of a stable torus, which is a periodic or quasi-periodic attractor
characterised by oscillations at two distinct frequencies. This is, most likely, the origin of
the mixed weave-wobble oscillation we found by simulation.

At Hwe, the supercritical Hopf bifurcation marks the birth of an unstable limit
cycle with the frequency characteristics of the weave motion. This becomes stable
through a Neimark–Sacker bifurcation (point NSwe at v = vNSwe = 14.11m/s). This
Neimark–Sacker bifurcation, at a speed only slightly lower than vNSwo, also marks the dis-
appearance of the stable torus generated at v = vNSwo. The amplitude of the weave limit
cycle, in δ and β , rapidly changes in v.
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Figure 8. One-parameter continuation in v for kβ = 4784.2 Nm/rad. (a) Steering rotation δ, (b)β angle,
(c) yaw angular velocity ψ̇ and (d) roll angular velocity ϕ̇. Solid curves represent stable parts of branches,
whereas dashed lines stand for unstable parts. Points labelled with H are Hopf bifurcations, NS are
Neimark—Sacker bifurcations (tori) and LPC are limit point of cycles.
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At velocity v < vLPCwe = 13.13m/s, the weave cycle loses stability through a fold bifur-
cation, and below this speed we did not find any other attractor: any initial condition out
of the equilibrium eventually diverges to infinity.

Overall, the model exhibits a well organised sequence of dynamic regimes: when
vLPCwe ! v < vNSwe the only stable regime appears to be a limit cycle corresponding to
the weave mode (Figure 5); when vNSwe ! v ! vNSwo the model exhibits dynamics on
torus, with a bimodal frequency spectrum corresponding to a mix of wobble and weave
oscillations (Figure 6); when v > vNSwo the only stable regime appears to be a limit cycle
corresponding to the wobble mode (Figure 7).

Note that the oscillations of δ and β on the wobble limit cycle, which exists for v >

vNSwo, have roughly constant amplitude at all speeds. In particular, the birth of the stable
wobble cycle through a Neimark–Sacker bifurcation implies that wobble appears as a finite
and relatively large oscillation from its onset, rather than gradually building up amplitude
as velocity increases, as one could expect from the linear analysis in [6]. This supports the
empirical observation that shimmy appears as a sudden transition to a large (and scary)
high frequency oscillation as the bicycle accelerates.

Figure 9 shows some of the data collected during the same on-road test activity of
Figure 1, performed by one of us while riding downhill reaching a speed in the range
12–17m/s. The inertial measurement unit (IMU) was mounted on the horizontal tube
of the bicycle rear frame near the steering axis. Figure 9(a) illustrates the lateral accelera-
tion during a strong shimmy. Initially, oscillations of limited amplitude are probably due
to noise and the rolling of the wheels on rough tarmac. At t ≃ 155 s oscillations suddenly
grow in amplitude, reaching 8 g at t ≃ 160 s. Then they disappear at t ≃ 168 s. Figure 9(b)
shows the signal spectrogram. The frequency peak during shimmy appears as a white hor-
izontal line at f ≃ 7, 5Hz: as predicted by our model (see next section), frequency of this
peak is independent of the forward speed. The same figure displays a wider-band and
lower-frequency spectral component, probably related to weave. The velocity range over
which wobble is present is consistent with the results we drew from the above analysis. In
Figure 9(c), shimmy oscillations appear when the forward speed v is near vNSwo and dis-
appear when the speed falls below this value. The data, however, suggest the presence of a
hysteretic loop (wobble appears at v ≃ vNSwo but disappears at v < vNSwo). This hysteresis
may be explained as a consequence of the relatively high longitudinal acceleration that we
observed, during the experiment, as the bicycle was crossing the critical velocity vNSwo.
Indeed, the bicycle state may take time to reach the wobble attractor when v > vNSwo, and
then to settle onto the stable equilibrium when v < vNSwo. A better understanding of the
interplay between acceleration and the structure of these attractors, and of the possible
influence of acceleration on the stability of the wobble mode, can however be gained only
through further experiments.

3.3. Two-parameter bifurcation analysis

We can gain a more complete understanding of the interplay of the attractors identified in
the previous section by analysing how they transform into each other in the two-parameter
plane of forward speed v and torsional stiffness coefficient kβ , by looking at the bifurcation
diagram of Figure 10. We chose to vary kβ in the range 3500 ! kβ ! 6000Nm/rad, which
is a set of realistic values. Note that kβ is a highly uncertain parameter in the model, the
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Figure 9. Data recorded during an experimental test activity with the racing bicycle. (a) Lateral acceler-
ation measured on the rear frame near the steering axis, (b) spectrogram, (c) forward speed with vNSwe
and vNSwo.

two-parameter analysis provides additional robustness to the conclusions we could draw
from the results of the previous section.

The two Hopf curves of weave and wobble, respectively, labelled as Hwe and Hwo, rep-
resent the locus of parameter values where the two Hopf bifurcations identified in the
previous section occur. We notice that, while Hwe is nearly vertical (meaning that the
weave onset is roughly independent of the torsional stiffness),Hwo cuts the parameter plane
almost horizontally. This signifies that the onset of the wobble mode is highly dependent
on the torsional stiffness parameter, especially at high speed values. The two curves inter-
sect each other in one point that is known as double-Hopf point (HH). As predicted by
bifurcation theory [22], two curves of torus bifurcations emanate from the double-Hopf
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Figure 10. Two-parameter bifurcation diagram in the (v, kβ ) plane. Grey areas represent stablemotions.

point, NSwe and NSwo. These are the Neimark–Sacker bifurcations found in the previous
section. Notice that the two NS curves are wider apart as torsional stiffness is decreased.
This means that, for lower values of kβ , the speed interval over which we can expect to
see an interplay of weave and wobble increases (roughly linearly). The fifth curve in the
diagram, labelled as LPCwe, is a fold bifurcation of theweave limit cycle, andmarks the sud-
den disappearance of the weave limit cycle (by collision with an unstable cycle) as velocity
decreases.

Overall, the bifurcation curves divide the parameter plane into six dynamically different
regions. Region 1⃝ represents parameter values for which there are no oscillations and the
straight, rectilinear motion is stable, meaning that any perturbation decays as t tends to
∞. When the bicycle is inside region 2⃝ it is subject to wobble oscillation, that is, high-
frequency oscillations of the front frame about the steering axis. This dynamics is related
to the presence of stable limit cycles. In region 3⃝ the motion is characterised by the coex-
istence of both weave and wobble modes and thus the bicycle oscillates on a periodic or
quasi-periodic trajectory with two frequency peaks. In region 4⃝ the bicycle is subject to
unstable oscillations that bring the vehicle to a fall. Region 5⃝, the area inside which the
forward speed assumes low value and the torsional stiffness is high, is characterised by
an unstable non-oscillating motion. Lastly, in region 6⃝ the bicycle is moving with stable
oscillations of the rear frame about yaw and roll axes. This is the weave mode of vibration.

Though not displayed in our figures, we investigated the sensitivity of our results to
variations (i) in the functional form of Equations (6)–(9), and (ii) in the parameters of the
equations.

For the first set of tests (i), we repeated the analysis using a simplified version of the
Magic Formula in [16] instead of Equations (6)–(9), i.e.:

y = D sin(C arctan(Bx)), (13)

where x is the input and can be the side-slip or the camber angles, y represents the lat-
eral force or the aligning torque component, whereas B, C and D are coefficients. The
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corresponding stiffness Cyx is the derivative of (13) at x = 0:

Cyx = DCB. (14)

Equation (14) was used to choose the values of B, C and D to get the stiffness coefficients
reported in Table 1. The bifurcation analysis showed no significant change with respect to
the diagram in Figure 10. The advantage of using Equations (6)–(9) instead of (13) is that
the former require to identify half the coefficients.

For the second set of tests (ii), we evaluated changes in the bifurcation diagram as the
parameters of Equations (6)–(9) are changed. First, we modified the saturation values of
the four functions, maintaining their slope at small angles unchanged. We noticed that
the saturation values mainly affect the amplitude of the weave and wobble cycles, with-
out significant effects on their frequency. Moreover, changes in Equations (6)–(8) appear
to have no significant effect on the bifurcation curves in Figure 10. However, when the
parameters of Equation (9) are changed to reduce its peak value, without modifying the
slope at small angles, we observe a moderate shift of the curve LPCwe to the right, and a
minor shift of the two Neimark–Sacker curves towards higher values of the stiffness kβ .
This suggests that different tyre characteristics, with same small-angle linear coefficients,
may affect the amplitudes of the weave and wobble cycles and, to a lower extent, the veloc-
ity at which these oscillations appear. A more interesting effect is obtained by rescaling the
four functions multiplying them by a factor slightly smaller than one. This reduces their
saturation value as well as their slope at small angles, and should correspond to using a
softer or less structured tyre. The effect is a downward shift of all the curves in Figure 10.
Thus, a slightly less structured tyre appears to have the same beneficial effect as a slightly
stiffer frame, moving the system closer or possibly above the Hwo curve which marks the
boundary of existence of the wobble mode.

Note that the three types ofmotion fromFigures 5–7 are found in Figure 10, respectively,
in region 6⃝, 3⃝ and 2⃝. The one-parameter bifurcation diagram represented in Figure 8
corresponds to an horizontal cross section of Figure 10 at kβ = 4784.2Nm/rad.

Figure 11 shows the variations of weave and wobble peak frequencies as a function of
the forward speed and of the torsional stiffness coefficient. The frequency was computed

Figure 11. Variations of weave A⃝ and wobble B⃝ frequencies in the bifurcation diagram.
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by a fast Fourier transform on time simulations performed at the parameter pairs indicated
by cross marks. The shaded diagram was then obtained by interpolation and extrapolation
of the data. We notice that weave frequency is almost independent of torsional stiffness,
while it changes significantly with forward speed: if the cyclist rides faster, weave fre-
quency increases. On the other hand, wobble frequency mainly increases by increasing
the torsional stiffness of the frame, while it is only weakly affected by forward speed. This
is consistent with Figure 9(b) and with the observations made in [4].

Figure 12 shows the two peak frequencies that characterise bicycle motion between the
Neimark–Sacker curves. Even though the two frequencies characterise the same trajectory,
their dependence on parameters agrees with the observations above: the weave frequency

Figure 12. Variations ofmotion frequencies in the regionwhere the two vibrationalmodes are coupled.
(a) represents the lower frequency (weave) while (b) shows the higher frequency (wobble).
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depends mainly on velocity, the wobble frequency mainly on stiffness. As a consequence,
we can conclude that wobble seems to be dependent on structural properties of the racing
bicycle, while weave depends mostly on the rider and how fast it is riding.

4. Steering damping

A possible solution to counteract the onset of shimmy is to increase the overall damping
about the steering axis, which in our model corresponds to adding an additional damping
term cδ . It can stand for an external shimmy damper or simply for the damping introduced
by a rider whose hands firmly hold the handlebar. Figure 13 shows how the bifurcation dia-
gram changes for different damping values. The weavemode remains basically unchanged,

Figure 13. Bifurcation diagram variations for different values of the steering damping cδ .

Figure 14. Steering damping cδ as a function of the frame stiffness kβ . The grey area stands for
parameters combinations that can lead to wobble oscillations.
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except for a slight shift to the right of its Hopf and LPC curves. The region where wob-
ble occurs (regions 2⃝ and 3⃝ in Figure 10) is instead significantly reduced by shifting
downward, while the region where the straight, rectilinear motion is stable (region 1⃝
in Figure 10) becomes significantly larger. Thus, increasing damping at the steering axis
appears to be a more effective measure to eliminate shimmy than increasing torsional
stiffness.

These observations are summarised in Figure 14, which shows the maximum kβ value
of the curve Hwo as a function of the steering damping. In the region below the curve
(shaded grey) wobble oscillations occur in some speed interval. Above the curve wob-
ble never appears and, for increasing speed values, the bicycle is subject only to unstable
non-oscillating motion, stable weave oscillations and stable motion. For known torsional
stiffness kβ , the diagram gives the minimum value of the steering damping cδ that prevents
the onset of shimmy oscillations.

5. Conclusions

In this work the nonlinear dynamics of a 12-dimensional model of a racing bicycle has
been analysed. Our objective was to describe the onset and the dynamics of shimmy (wob-
ble) through numerical continuation of equilibria and periodic solutions by varying the
forward speed v and the torsional stiffness coefficient kβ . We found that both weave and
wobble are stable limit cycles which appear, respectively, at low and high values of the for-
ward speed. In between, however, there is a speed interval in which these two vibrational
modes coexist and interact. This behaviour is explained by the presence of a stable torus.

Focusing on shimmy oscillations, their frequency is independent of the forward speed,
but depends on structural properties of the bicycle, such as the torsional compliance of
the rear frame about the head tube and the possible lateral compliance of the fork and
the front hub. Thanks to tyre nonlinear characteristics, these oscillations do not diverge
as in the linear model, so they usually do not lead to a fall of the rider. Our model shows
that the amplitude of the shimmy limit cycle depends on the saturation values of the four
tyre characteristics. A more interesting relation is found between shimmy and the slopes
of the tyre characteristics at small angles: a reduced slope, simulating what would happen
by using softer or less structured tyres, may altogether prevent the onset of shimmy. This
is in accordance with our experience, but a more systematic theoretical and experimental
analysis is needed to validate this intuition.

All the results are in agreement with the dataset recorded by one of us riding downhill at
high speed with a racing bicycle (this is possibly the first dataset of this kind after [4]). Our
model matches the experimental data also in that shimmy appears as a finite and relatively
large oscillation from the onset, rather than gradually building up amplitude as the velocity
increases. The data, however, displays some hysteresis in the appearance and disappearance
of shimmy, which is not present in the model. This hysteresis may be explained as an effect
of the bicycle’s acceleration at the velocity threshold, though this would have to be verified
against further experimental evidence.We are planning to run other on-road experimental
activities, to clarify whether the hysteresis is just an effect of the changing velocity, or hides
deeper information regarding the model’s fine structure.

All in all, the analysis points out that shimmy can be prevented by a rotary viscous damp-
ing added to the steering assembly or by using different tyres and, more importantly, allows
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to quantify the relation between damping, tyre characteristics, and the wobble amplitude.
Otherwise, if a violent shimmy occurs while riding, the only effective remedy is to try to
reduce the forward speed. According to our experience, this can be achieved by gently
using the rear brake and by raising the upper body to increase the aerodynamic drag.

Notes

1. The camber angle γ is defined as the angle between the wheel centre plane and a vertical axis,
while the side-slip angle α is the angle between the wheel centre plane and the direction of the
wheel forward velocity.

2. Equations (4) and (5) appear in [6] with slightly different notation.
3. Following the terminology from [21], we call supercritical a Hopf bifurcation where the first

Lyapunov coefficient has negative sign. This implies that the limit cycle generated from theHopf
bifurcation is stable restricted to the centre manifold.
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